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Collaborators 

• ORNL 
– M.M Debusk (supported catalyst – staff at ORNL) 
– Xiaofan Yang (NH3-SCR catalyst - now at BASF) 
– G.M Stocks (Theory) 
– M. Yoon (Theory) 
– L.F. Allard (ACEM of supported Pt) 
– A. Lupini and S. Penneycook (ACEM of Pt-Pd) 
– D.R. Mullins (EXAFS & XANES) 
– S.M. Mahurin (EPR) 
– M. Kidder (UV-VIS) 

• John Deere Power System 
– D. Dou 
– A.Kozlov 

• Completed WFO on urea-SCR catalyst 
• Protocols for degreening, hydrothermal aging, and testing for off-road 

conditions 
• Guiding commercialization 
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Overview 

Timeline 

Budget 

Barriers 

Partners 

Funding received in 2012 

$300K 

Funding authorized in 2013 

$300K 

Start: Oct. 2004 

Finish: Sep. 2014 

 Changing internal combustion 
engine combustion regimes 
 Cost and durability of emission 
control systems 
Long lead times for materials 
commercialization  
Many advanced vehicle 
technologies rely on materials with 
limited domestic supplies 

 

Collaboration with John Deere  
Completed work-for-others 
arrangement on NOx treatment 

Presentation to USCAR 
Interest from Chrysler, 
Cummins, and SWRI  
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Objectives 

 
 Demonstrate that we can investigate catalyst systems by first principle 

theoretical models,  experimental studies, and nanostructural 
characterization iteratively to forecast improvements to obtain optimum 
catalyst systems 

 Identify optimum catalyst sites and develop durable, reliable, well-
characterized catalyst materials 

 Emission treatment catalysts that work even at  temperatures as low 
as150° C 
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Barriers - Relevance 

 Changing internal combustion engine regimes – lower exhaust 
temperatures – challenges to catalysis. Cost, durability, and long lead time.   
 Advances in emission catalysts from trial and error method 

 Although successful, very time consuming, resource intensive 

 In recent years, nanostructural characterization of catalysts has been helpful in 
advancing the state-of-the-research in emission catalysts 
 Provides information on gradual but persistent decrease in catalyst performance (e.g. 

catalyst coarsening, noble metal migration, changes in support etc.) 
 But, does not offer approaches to alleviate the problem  

 Theoretical studies were limited to gas-phase or very simple systems 
 Not adequate towards design of complex catalyst system 

 Can we benefit from the advances in catalyst synthesis, theory, and 
nanostructural characterization to better understand catalyst sites and 
reduce the iterations in emission catalyst design? 

 Can our work lead to catalysts that are active at low temperatures 
(~150°

 
C)? 
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Approach 

 Theoretical Modeling 
 First Principles modeling of Pt clusters on 

oxide supports 
 Zeolite catalysts  
 Interaction of CO, NOx, and HC with 

catalysts 
 Experimental System 

 Synthesis of Pt Nanoclusters on 
morphologically diverse oxide supports 

 Interaction of CO, NOx, and HC with 
catalysts 

 Zeolite catalysts for SCR 
 Structure 

 Nano-structural characterization 

Supported clusters (Pt, Rh) are integral part of vehicle emission treatment catalysts such as 
oxidation catalyst, three-way catalyst, lean NOx traps, diesel particulate filters.  For lean burn NOx 
treatment, urea-selective catalytic reduction (SCR) is currently leading technology and is based on 
zeolites.   

C.K. Narula, “Catalyst by Design”, Encyclopedia of Nanoscience and Nanotechnology, Taylor & Francis, New York, 2008, pp 771-782. 
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Theory on realistic catalyst (Pt/Alumina) 

 Platinum occupies a position between two surface oxygen 
atoms of θ-alumina 
 The adsorbed Pt is in d10 

 Pt-O distances are larger than Pt-O bond distances calculated for Pt-O cluster in 
gas-phase (1.76 Å) or Pt/ α-alumina (2.0 Å) but are closer to bulk Pt-O (2.08 Å)  

 Isoelectronic with (Ph3P)2Pt – should be catalytically active 

 

 This structure is different from Pt/α-Alumina where Pt atom 
is atop surface oxygen and  
 Calculated Pt-O distance is 2.02Å. The adsorbed platinum atom is d9 

 The interaction of Pt with surface is summarized as localized covalent bonding 
between Pt and O enabled by nearly Al-centered electron-accepting empty 
states available to accept excess electron density  

C.K. Narula, G.M. Stocks, J. Phys. Chem. C, 2012, 116, 5628 

• Can we make monodisperse single atom 
Pt/θ-alumina?  

• Will it be catalytically active?  
• If yes, what is the mechanism? 

Pt on θ-Al2O3 (010) 
Surface 

We have determined that θ-alumina is a better surrogate for γ-alumina than α-alumina  
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Single Supported Pt atoms – we can 
make it and it is catalytically active 

 What is the mechanism? 

XANES & EXAFS of single Pt atoms on θ-alumina 

CO oxidation on Pt/θ-alumina  

0.18% Pt/θ-alumina  

1.0% Pt/θ-alumina  2.0% Pt/θ-alumina-650°
 

C  
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Proposed new mechanism of CO 
oxidation supported by experiments 

• Inspired by organometallic chemistry 

• Analogues of I and VI in organometallic 
chemistry have been isolated  
– (Ph3P)2Pt(O2) 
– (Ph3P)2Pt(CO3) 

• All steps are energetically favored 
except carbonate dissociation to II 
which is endothermic 
– Surface will get covered with CO3 

• DRIFTS studies of CO absorption 
show CO3 formation 

C.K. Narula et. al., J. Am. Chem. Soc., submitted 
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ACEM HAADF-STEM images Pt particle growth 
of the exact same sample area after exposure 
to CO-Oxidation conditions  

C.K. Narula, L.F. Allard, D.A. Blom, M. Moses-DeBusk, SAE-2008-01-0416. 

210 °C Fresh 450 °C 2x 450 °C 
3x 

Ex-situ Reactor Studies 

Rapid growth in Pt particles can be followed as a function of CO-
oxidation conditions 
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NO Oxidation is not very effective on Pt single 
atoms and nanoparticles 

A 500 ppm mixture of NO with 10% O2 and 
balance N2 at ~50k h-1 space velocity 
The 2nd cycle initiates at a lower   temperature 
than the 1st cycle 

1 nm 2% Pt/ γ-Al2O3 

 Results of ex-situ studies suggest that the average particles size under these conditions is not 
effected but the particle size range increases. Since the fresh sample has already been calcined at 
450°

 
C/5h prior to testing, the sintering observed in the ex-situ studies can be primarily contributed to 

the NO oxidation environment.  
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Mechanism explains why NO oxidation is 
less effective on single atoms and 
nanoparticle 

• Pathway analogous to the proposed 
pathway for CO oxidation 

• Unlike carbonate formation, NO3 
formation is energetically not 
favored 

• Explains poor NO oxidation on 
nanoparticles.  

NO oxidation on Pt particles 

1.1 eV higher in energy 
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Pt Clusters – Missing 2-10 atoms clusters 
and driving force for sintering 

-3047.8793 eV 
d10 species 

-3057.8930 eV  
d10 species 

Pt2  -3047.5495 eV  
Pt3  -3051.1554 eV 
Pt4 -3054.4954 eV 
d10 species -3052.0431 eV  

d9 species 
-3053.0851 eV  
d9 species 

-3047.7091 eV  
d9 species 

Pt2 

Pt3 

Pt4 Energetics favor agglomeration 

Pt1 
Pt2 

Pt1 
Pt2 

Pt1 Pt2 Pt3 
Pt1 

Pt2 
Pt3 
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Explanation of Stability of Pt-Pd/Alumina  

Insights from single atom and small 
clusters studies allowed us to investigate 
Pt-Pd clusters 

-3054.4628 eV 
MM = 0 
d10 species 

-3055. 7018 eV 

-3055. 2498 eV 

 No 300-400 nm particles normally seen for 
supported Pt after hydrothermal aging 

 Particles sinter with Pd opening the shell to allow 
core Pt to combine. Pd controls durability! 

 Theoretical studies to find alternates to Pd in 
progress 

 

Narula, C.K.; et al., To be 
published.  

-3054.7419eV 

-3055.6357 eV  
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Development of Hydrothermally stable 
catalyst for NOx Treatment from Off-Road 
Diesel Engines that works at 150Á
 

C 

• We initiated our research by employing Cu-ZSM-5 which has been 
shown to be highly effective NH3-SCR catalysts for passenger 
vehicles.  

• Cu-ZSM-5 displayed a operating temperature window of 200-550°C for 
NOx conversion. 
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ZSM-5 was employed as a model for 
developing new heterobimetallic zeolites 

 CuFe-ZSM-5 – Adding iron to 
Cu-ZSM-5 

 Method I: Exchange of Cu-ZSM-
5 with dilute Fe(NO3)3.6H2O at 
80Á

 
C, separation, and pyrolysis 

at 500C 

 Method II: New approach 
incipient wetness – metal 
nitrate in water to coat Cu-ZSM-
5. Pyrolysis at 500C. 

UV-VIS of CuFe-ZSM-5 
shows 210 and 270 nm 
peaks for Fe-O-Fe clusters  

EPR of CuFe-ZSM-5 is 
identical to that of Cu-ZSM-5 
except increase in intensity of 
signal at g ~4.3 due to Fe3+ 

Fe-EXAFS and Fe-XANES are similar to that of Fe-
ZSM-5 but show Fe-Metal interaction at 2.0-3.5Å 
assigned to iron oxo dimers 
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CuFe-ZSM-5 – New Low Temperature NH3-SCR 
Catalysts – 80% NOx conversion at 150°
 

C 

17 

2NH3 + NO + NO2 2N2 + 3H2O
b). Fast SCR reaction

4NH3 + 4NO + O2 4N2 + 6H2O
a). Standard SCR reaction

Cu-ZSM-5 and Fe-ZSM-5 are synthesized 
using literature procedures. 

  Off-road degreening and testing 
protocols are provided by John-Deer 
Power System.  

 CuFe-ZSM-5 shows remarkable low 
temperature reactivity, outperforming 
the mechanical mixture of Cu-ZSM-5 and 
Fe-ZSM-5.  CuIn-ZSM-5 and Cu-Sc-ZSM-5 
equally good. 
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Modifying commercial (Chabazites) 
catalyst to incorporate Fe 

(A) (B) 

UV-VIS of CuFe-SSZ-13 
shows 210 and 270 nm 
peaks for Fe-O-Fe clusters  

EPR of CuFe-SSZ-13 is 
identical to that of Cu-SSZ-13 

Cu EXAFS
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Fe-Metal interaction at 2.0-3.5Å assigned to iron oxo dimers 

 CuFe-SSZ-13 – Adding iron to 
Cu-ZSM-5 

 Method I: Exchange of Cu-SSZ-
13 with dilute Fe(NO3)3.6H2O at 
80°

 
C, separation, and pyrolysis 

at 500C 

 Method II: New approach 
incipient wetness – metal nitrate 
in water to coat Cu-SSZ-13. 
Pyrolysis at 500C. 
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Modified commercial catalyst CuFe-SSZ-13 
converts 80% NOx at 150°
 

C and is 
hydrothermally stable 

 CuFe-SSZ-13 shows 
remarkable low temperature 
reactivity. 

CuFe-SSZ-13 is 
hydrothermally stable when 
tested after subjecting to 
accelerated aging protocol 

Both objectives achieved – 
hydrothermal durability and 
NOx activity at 150°
 

C in 
laboratory for fast SCR 

Preparing for engine testing in FY13 
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Collaboration 

 Technology Transfer 
 Collaboration with Dr. Danan Dou and Dr. Alex Kozlov of John Deere  

Completed work-for-others arrangement on NOx treatment for off-
road vehicles 

Completed jointly funded project on NOx treatment from DOE-ITP 
office from FY08-FY12 

 Engine Tests 
Support from John Deere 
 Inquiry from Southwest Research Institute® 
Presentation to USCAR 

 Expression of interest from Chrysler and Cummins 
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Summary 

 Relevance: Low temperature catalysts are needed due to Changing internal 
combustion engine regimes – lower exhaust temperatures  

 Approach: We employ “catalyst by design” approach for speeding up the 
discovery process  

 Collaborations: John Deere Power System. Chrysler, Cummins, & SWRI® 
expressed interest as we move towards engine testing. 

 Technical Accomplishments 
 Demonstrated hydrothermally stable NH3-SCR heterobimetallic zeolites that 

reduce NOx effectively at 150°
 

C.  
 Developed understanding of agglomeration and explained the basis for Pd-Pt 

hydrothermal stability  to facilitate search for low cost platinum stabilizer 
 For the first time showed Pt single atoms are catalytically active for CO but 

not for NOx – Impact on catalyst design.  
 Future Work:  
 Prepare for Engine Tests of NH3-SCR catalyst 
 Explore low cost alternatives to palladium for Pt stabilization 
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Activities for Next Year 

• SCR catalyst 
– Theoretical studies to understand the role of heteroatom 
– Methods to modify commercial urea-SCR catalysts 
– Engine Testing 

• Bimetallic systems to alleviate Pt sintering – progress towards low 
temperature supported catalyst 
– Theoretical studies 
– Synthesis of sub nanometer particles 
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